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A Novel Synthetic Approach to Diaminoacetylenes: Structural
Characterization and Reactivity of Aromatic and Aliphatic Ynediamines
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Acetylenes represent an important class of compounds
with a broad range of applications as versatile reagents, link-
ers, or ligands,[1] and numerous novel reactions involving, for
instance, cycloadditions,[2] cross-couplings,[3] and alkyne
metathesis[4] have been developed during the last few de-
cades. The reactivity and electronic properties of alkynes
are largely dictated by the nature of their substituents and
the degree of conjugation. Accordingly, heteroatom-func-
tionalized acetylenes have been shown to display a large va-
riety of different reactivity patterns,[5] with nitrogen-func-
tionalized systems such as electron-rich ynamines (1-amino-
alkynes) and ynamides (1-amidoalkynes) having found par-
ticularly widespread use in organic synthesis.[6,7] In contrast,
only a small number of bis(nitrogen-functionalized) acety-
lenes of the type R2NC�CNR2 have been described in the
literature, although the preparation of the first ynediamine,
1,2-bis(diethylamino)acetylene, from 1,1-dichloro-2-fluoro-
ethylene was reported in 1964 by Viehe and Reinstein.[8]

These highly reactive compounds were prepared by stepwise
addition of amines/amides to in situ prepared dihaloacety-
lenes or chloroaminoacetylenes, followed by elimination
(Scheme 1 a).[9] However, these synthetic protocols are
rather tedious and involve the use of several equivalents of
lithium amides; these obstacles, together with the high reac-
tivity of diaminoalkynes, have hampered the widespread use
of these compounds in organic synthesis, although a number
of applications in organometallic chemistry have been re-
ported during the last two decades.[10]

In searching for a new access to diaminocyclopropenyli-
denes[11,12] and their heavier analogues,[13] we became inter-
ested in developing a general synthetic approach that can be

adapted to the preparation of diaminoalkynes with a varia-
ble substitution pattern. This approach is based on the
Fritsch–Buttenberg–Wiechell (FBW) rearrangement, which
was originally developed for the preparation of diarylacety-
lenes (tolanes) from 2,2-diaryl-1-chloroalkenes[14,15] and in-
volves the generation of halogen–metal–vinylidene species
followed by 1,2-migration and concomitant metal halide
elimination (Scheme 1b).[16] Notably, the FBW rearrange-
ment has recently evolved into a valuable synthetic method-
ology for the preparation of polyyne structures, which can
be accessed by treatment of 1,1-dibromo-2,2-dialkynyl-ACHTUNGTRENNUNGethenes with n-butyllithium (nBuLi).[17] Developing a similar
protocol for the synthesis of diaminoalkynes required the
preparation of the corresponding 2,2-dibromo-1,1-ethenedi-ACHTUNGTRENNUNGamines of type 2 (Scheme 2), which, to the best of our
knowledge, have not been described in the literature to
date, although a limited number of dichloro derivatives have
been reported that were obtained unexpectedly[18] or as by-
products.[19] a,a-Dibromoolefins are generally prepared
from aldehydes or ketones by a dibromoolefination protocol
by using Ph3P/CBr4;[20] however, the low reactivity of the
corresponding N,N,N’,N’-tetrasubstituted ureas precludes
the application of this method for the preparation of com-
pounds 2.

Alternatively, we studied the bromination of 1,1-ethenedi-
amines (or ketene aminals) 1 and started our investigation
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Scheme 1. Preparative routes to alkynes.
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with the diamine (PhMeN)2C=CH2 (1 a), which can be pre-
pared on a large scale by a two-step procedure starting from
N-methylaniline.[21] Addition of two equivalents of bromine
to a solution of 1 a in CH2Cl2 at 0 8C in the presence of an
excess of Et3N cleanly afforded the dibromide 2 a as a pale
yellow crystalline solid in 73 % yield (Scheme 2). The molec-
ular structure of 2 a was determined by X-ray diffraction
analysis (Figure 1);[22] the asymmetric unit contains one half

of the molecule, which displays crystallographic C2 symme-
try about an axis passing through the C1�C2 double bond.
At 1.338(6) �, this bond length is virtually identical to those
determined for the dichloroketene aminals 2-(dichloro-
methylene)-1,3-dimesitylimidazoline (1.337(6) �) and 2-(di-
chloromethylene)-4,5-dichloro-1,3-dimesitylimidazole
(1.353(4) �).[19] The C�C double bond in 2 a is significantly
twisted and exhibits an interplanar angle of 17.68 between
the CN2 and CBr2 planes. The nitrogen atoms are in a slight-
ly distorted trigonal-planar environment (sum of angels at
N=359.38); the two NC3 planes deviate strongly from a co-
planar arrangement, either with each other or with the C�C
double bond, as, for instance, indicated by the torsion angles
C3-N-C2-N’= 47.38 and C4-N-C2-N’=57.08.

Fortunately, this route could also be applied to the bromi-
nation of the aliphatic ketene aminals 1 b–1 d, which can be
obtained in high yield from the reaction of N,N-dimethyl-ACHTUNGTRENNUNGacetamide dimethylacetal, MeC ACHTUNGTRENNUNG(OMe)2NMe2 with the ap-
propriate amines piperidine (1 b), 4-methylpiperidine (1 c),
and homopiperidine (1 d). This method was recently de-
scribed for the preparation of a morpholine derivative and
is driven by the volatility of methanol and dimethylamine.[23]

The bromination of 1 b–1 d proceeded cleanly under the
same conditions as described for 1 a (vide supra), and the di-
bromoketene aminals 2 b–2 d were isolated as yellow solids
in satisfactory yield (67–85 %). Upon treatment with one
equivalent of nBuLi at 0 8C in toluene (2 a) or hexane (2 b–
2 d), all dibromides 2 underwent the FBW rearrangement to
form the diaminoalkynes 3 a–3 d in 77–90 % yield as color-
less oils (3 b, 3 d) or crystalline solids (3 a, 3 c), respectively
(Scheme 2). All ynediamines were characterized by NMR
spectroscopy, mass spectrometry, and elemental analysis. In
the 13C{1H} NMR spectra, the resonances for the acetylenic
carbon resonances are found between d=72 and 78 ppm,
which falls in the normal range expected for alkynes.

Surprisingly, there are no reports available on X-ray crys-
tal structure determinations of diaminoalkynes, although a
perpendicular conformation was theoretically predicted for
diaminoacetylene, H2NC�CNH2.

[24,25] Single crystals of 3 a
and 3 c were obtained from a hexane (3 a) or tetramethylsi-
lane solution (3 c) at �30 8C, and the resulting molecular
structures are shown in Figure 2 and Figure 3, respective-

ly.[22] In agreement with the theoretical prediction,[24] the
amino substituents in 3 a and 3 c exhibit strongly twisted ori-
entations, affording approximately C2-symmetric molecules
with axial chirality. The nitrogen atoms in 3 a are in a trigo-
nal-planar environment (sum of angles at N1/N2=359.88/
360.08), and the angle between these two NC3 planes is
77.18, indicating a pronounced deviation from a perfectly

Scheme 2. Synthesis of a,a-dibromoketene aminals 2 and diaminoalkynes
3.

Figure 1. ORTEP diagram of 2 a with thermal displacement parameters
drawn at 50% probability. Selected bond lengths [�] and angles [8]: C1�
C2 1.338(6), C1�Br 1.887(2), C2�N 1.394(3); C2-C1-Br 123.12(11), C1-
C2-N 121.8(2), N-C2-N� 116.4(4), Br-C1-Br� 113.8(2).

Figure 2. ORTEP diagram of 3 a with thermal displacement parameters
drawn at 50% probability. Selected bond lengths [�] and angles [8]: C1�
C2 1.1992(12), C1�N1 1.3461(11), C2�N2 1.3442(10); C1-C2-N2
174.10(9), C2-C1-N1 176.28(9).

Figure 3. ORTEP diagram of 3 c with thermal displacement parameters
drawn at 50% probability. Selected bond lengths [�] and angles [8] for
C1�C2 1.206(2), C1�N1 1.357(2), C2�N2 1.359(2); C1-C2-N2 177.87(14),
C2-C1-N1 173.92(14).
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perpendicular orientation, which might be ascribed to crys-
tal packing effects. In contrast, the nitrogen atoms in 3 c
reside in a distinctly trigonal-pyramidal coordination sphere
as indicated by the angle sums of 341.68 (N1) and 344.68
(N2). The dihedral angle between the two NC3 planes is
78.58, revealing a similar twist as observed for 3 a. In both
molecules, the N-C-C-N axes are close to linearity with C-C-
N angles of 174.10(9)8/176.28(9)8 in 3 a and 177.87(14)8/
173.92(14) in 3 c. The C1�C2 bond lengths are 1.1992(12) �
in 3 a and 1.206(2) � in 3 c, in agreement with the presence
of C�C triple bonds; a similar, albeit slightly shorter C�C
bond length of 1.189(5) � was recently reported for an
ortho-anisyl-substituted ynamide, which also displays an or-
thogonal conformation in the solid state.[26]

During the formation of 3 a from the reaction 2 a with
nBuLi in toluene, we were able to isolate a minor byproduct
in approximately 3 % yield, which was identified as 2-(N’-
methyl-N’-phenylamino)-N-methylindole (4) by comparison
of its NMR spectroscopic data with those reported in the lit-
erature (Scheme 3).[27] The yield of 4 increased to 54 % if

the lithiation reaction was performed in tetrahydrofuran
(THF) or if coordinating additives such as N,N,N’,N’-tetra-
methylethylenediamine (tmeda) were added to the toluene
solution prior to the addition of nBuLi. Compound 4 could
be isolated in pure form by fractional crystallization at
+3 8C from a 3 a/4 mixture dissolved in hexane. Single-crys-
tal X-ray diffraction analysis confirmed the molecular struc-
ture of 4 (Figure 4).[22] Mechanistically, the formation of 4
can be rationalized by an intramolecular insertion of the in-
termediate vinylidene species Int into an ortho-C�H bond
of one of the phenyl rings (Scheme 3), which resembles the
formation of cyclopentene derivatives from thermally gener-
ated alkenylidenes by 1,5-CH insertion.[16,28] It should be
noted, however, that insertion into alkyl C�H bonds is

common, whereas examples of solution-state insertion into
significantly less reactive aromatic C�H bonds are rare and
were only relatively recently reported.[29] Similar reactivity
was also observed for N-arylaminovinylidene species that
were generated by addition of anilides to alkynyliodonium
triflates.[30]

The observed dependence of the 3 a/4 ratio on the solvent
polarity can be satisfactorily explained by postulating that
lithiation of the dibromide 2 a does not generate the free vi-
nylidene Int, but rather affords a LiBr–carbenoid adduct
(see Scheme 1) of the type [Li(Br)C=C{N(Me)Ph}2]ACHTUNGTRENNUNG(Int·LiBr), the aggregation and reactivity of which is strong-
ly affected by the coordinating ability of the solvent, as gen-
erally observed for a-halogenoorganolithium com-
pounds.[16,31] Apparently, polar solvents such as THF disfa-
vor the FBW rearrangement by providing a long-lived vinyl-
idene intermediate that undergoes intramolecular 1,5-CH-
insertion, whereas the observed predominant formation of
the diaminoalkyne 3 a in a nonpolar solvent such as toluene
by 1,2-migration is in full agreement with recent high-level
DFT calculations, showing “that the most facile FBW path-
ways occur in aggregated species.”[32]

Another interesting reactivity pattern associated with the
presence of N-phenyl substituents in the diaminoacetylene
3 a was discovered upon studying its coordination chemistry
towards transition metals. Whereas a rich organometallic
chemistry can be established based on the aliphatic diami-
noacetylenes 3 b–3 d,[10,33] the addition of electrophilic metal
ions, such as Au+ , Pd2+ , exclusively afforded 3-(N’-methyl-
N’-phenylamino)-N-methylindole (5), which represents a
structural isomer of 4. Apparently, these electrophiles cata-
lyze the 1,2-addition of an ortho-C�H bond of one of the
phenyl rings across the C�C triple bond (Scheme 3). The
same reaction can be achieved by acid catalysis, and treat-
ment of a solution of 3 a in acetone with p-toluenesulfonic
acid resulted in a markedly exothermic reaction and cleanly
afforded the indole 5, the molecular structure of which was
additionally established by X-ray diffraction analysis
(Figure 5).[22] In analogy to the reactivity of ynamines and
ynamides,[7] the formation of 5 can be rationalized by forma-
tion of an intermediate keteniminium ion, which triggers the
observed intramolecular hydroarylation reaction. A closely
related mechanism was recently proposed for the formation
of related indoles from aminochlorocarbenes under compa-
ratively harsh conditions (DMSO, 110–150 8C, 7–18 h).[34] Fi-

Scheme 3. Formation of indole derivatives by intramolecular CH inser-
tions.

Figure 4. ORTEP diagram of 4 with thermal displacement parameters
drawn at 50% probability. Selected bond lengths [�] and angles [8]: C1�
N1 1.3878(16), C1�N2 1.4047(16), C1�C2 1.3661(18); N1-C1-C2
110.17(11), N1-C1-N2 119.53(11), C2-C1-N2 130.23(12).
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nally, exclusive formation of 5 is also observed in the pres-
ence of water, indicating that intramolecular cyclization is
much faster than intermolecular nucleophilic addition. In
contrast, aliphatic ynediamines are extremely moisture-sen-
sitive and readily add water to form the corresponding ami-
noacid amides R2NCH2�C(O)NR2.

[7]

We envisage that the new general approach for the prepa-
ration of diaminoacetylenes of type 3 provided herein will
advance the application of these electron-rich compounds in
organometallic chemistry and material science. In addition,
the facile FBW rearrangement upon lithiation of the fairly
stable 2,2-dibromo-1,1-ethenediamines 2 also allows the gen-
eration of these species on demand and the development of
novel organic transformations without the prerequisite of
isolating larger quantities of these highly reactive alkyne de-
rivatives. In addition, we have shown that arylamino-substi-
tuted systems such as the dibromide 2 a and the diaminoal-
kyne 3 a can be used for the preparation of indole deriva-
tives, which might also develop into a useful and important
synthetic method in view of the ubiquity of indole heterocy-
cles in the structures of many biologically active natural
products.[35]

Keywords: alkynes · carbenoids · diaminoacetylenes ·
Fritsch–Buttenberg–Wiechell rearrangement · indoles ·
vinylidenes
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